Manifold Structures¶
These classes encode the structure of a manifold.
AUTHORS:
Travis Scrimshaw (2015-11-25): Initial version
Eric Gourgoulhon (2015): add
DifferentialStructure
andRealDifferentialStructure
Eric Gourgoulhon (2018): add
PseudoRiemannianStructure
,RiemannianStructure
andLorentzianStructure
- class sage.manifolds.structure.DegenerateStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a degenerate manifold.
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import DegenerateStructure sage: from sage.categories.manifolds import Manifolds sage: DegenerateStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.DifferentialStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a differentiable manifold over a general topological field.
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import DifferentialStructure sage: from sage.categories.manifolds import Manifolds sage: DifferentialStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.LorentzianStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a Lorentzian manifold.
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import LorentzianStructure sage: from sage.categories.manifolds import Manifolds sage: LorentzianStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.PseudoRiemannianStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a pseudo-Riemannian manifold.
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import PseudoRiemannianStructure sage: from sage.categories.manifolds import Manifolds sage: PseudoRiemannianStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.RealDifferentialStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a differentiable manifold over \(\RR\).
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import RealDifferentialStructure sage: from sage.categories.manifolds import Manifolds sage: RealDifferentialStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.RealTopologicalStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a topological manifold over \(\RR\).
- chart¶
alias of
sage.manifolds.chart.RealChart
- homset¶
alias of
sage.manifolds.manifold_homset.TopologicalManifoldHomset
- scalar_field_algebra¶
alias of
sage.manifolds.scalarfield_algebra.ScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import RealTopologicalStructure sage: from sage.categories.manifolds import Manifolds sage: RealTopologicalStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.RiemannianStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a Riemannian manifold.
- chart¶
- scalar_field_algebra¶
alias of
sage.manifolds.differentiable.scalarfield_algebra.DiffScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import RiemannianStructure sage: from sage.categories.manifolds import Manifolds sage: RiemannianStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision
- class sage.manifolds.structure.TopologicalStructure¶
Bases:
sage.misc.fast_methods.Singleton
The structure of a topological manifold over a general topological field.
- chart¶
alias of
sage.manifolds.chart.Chart
- homset¶
alias of
sage.manifolds.manifold_homset.TopologicalManifoldHomset
- scalar_field_algebra¶
alias of
sage.manifolds.scalarfield_algebra.ScalarFieldAlgebra
- subcategory(cat)¶
Return the subcategory of
cat
corresponding to the structure ofself
.EXAMPLES:
sage: from sage.manifolds.structure import TopologicalStructure sage: from sage.categories.manifolds import Manifolds sage: TopologicalStructure().subcategory(Manifolds(RR)) Category of manifolds over Real Field with 53 bits of precision